Whispering-gallery mode lasing in ZnO microcavities
نویسندگان
چکیده
منابع مشابه
Radiation Transfer in Whispering-gallery Mode Microcavities
Micro/nanoscale radiation transfer in whispering-gallery mode (WGM) microcavities is investigated. Each cavity consists of a waveguide and a microdisk coupled in a planar chip. In order to characterize the WGM resonance phenomena, studies of configuration parameters, specifically the microdisk size, the gap distance separating the microdisk and waveguide, and the waveguide width are numerically...
متن کاملNumerical characterization of whispering-gallery mode optical microcavities.
We characterize planar microcavities in whispering-gallery mode optical resonances. The microcavity consists of a waveguide and a microdisk, and a nanoscale gap separates the waveguide and the microdisk. The devices can be fabricated on Si-based thin films by using conventional microelectronics techniques. To characterize these types of cavity, we study a broad range of resonator configuration ...
متن کاملTuning Whispering Gallery Mode Lasing from Self-Assembled Polymer Droplets
Optical microcavities are important for both fundamental studies of light-matter interaction and applications such as microlasers, optical switches and filters etc... Tunable microresonators, in which resonant modes can be manipulated, are especially fascinating. Here we demonstrate a unique approach to mechanically tuning microresonators formed by polymer droplets with varying sizes. The dropl...
متن کاملBrillouin lasing with a CaF2 whispering gallery mode resonator.
Stimulated Brillouin scattering with both pump and Stokes beams in resonance with whispering gallery modes of an ultrahigh Q calcium fluoride resonator is demonstrated for the first time. The resonator is pumped with 1064 nm light and has 3 muW Brillouin lasing threshold. The scattering is observed due to the unique morphology of the resonator reducing the phase mismatch between the optical mod...
متن کاملUltimate resolution for refractometric sensing with whispering gallery mode microcavities.
Many proposed microfluidic biosensor designs are based on the measurement of the resonances of an optical microcavity. Fluorescence-based resonators tend to be simpler and more robust than setups that use evanescent coupling from tuneable laser to probe the cavity. In all sensor designs the detection limits depend on the wavelength resolution of the detection system, which is a limitation of fl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Laser & Photonics Reviews
سال: 2014
ISSN: 1863-8880
DOI: 10.1002/lpor.201300127